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Abstract

Purpose. – Decreased hippocampal volume reported in neuropsychiatric and endocrine disorders is considered a result of putative neu-
ronal damage mediated by corticosteroids. This is the first prospective study of hippocampal volume and function in patients treated with
corticosteroids.

Methods. – 14 subjects treated systemically with prednisone or betamethasone for dermatological or rheumatic disorders underwent
prospective neurocognitive testing (Auditory Verbal Learning Test—AVLT, Trail Making Test—TMT, Digit Span—DS) and nine of them also
repeated magnetic resonance volumetry.

Results. – The mean duration of treatment between the first and the second assessment was 73 ± 38 days with mean daily dose of 37 ±
17 mg prednisone and 193 ± 29 days, with mean daily dose of 24 ± 15 mg prednisone between the first and the third assessment. There was a
trend towards decreases in total AVLT scores and an improvement in the TMT and DS, but no significant changes in the volumes of the right
or the left hippocampi between the assessments. Prednisone dose did not correlate with the hippocampal volume change.

Conclusion. – We observed a trend for decline in verbal memory despite improvement in psychomotor speed, attention/working memory
and no macroscopic hippocampal volume changes during 36–238 days of treatment with therapeutic doses of corticosteroids.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Decreased hippocampal volume reported in certain neu-
ropsychiatric and endocrine disorders is considered to be a
result of putative neuronal damage mediated by corticoster-
oids [29]. Neurotoxicity of corticosteroids has been studied
in rats and primates. Evidence for similar effects of corticos-
teroids in human include the negative correlation between the
levels of corticosteroids and hippocampal volume in patients
with Cushing’s syndrome [31] the correlation between hip-
pocampal volume increase and therapeutic reduction of cor-
ticosteroids in Cushing’s disease [32] and decreased hippoc-
ampal volume in subjects treated with corticosteroids [6]. The

retrospective nature of most of these studies [6,31] makes the
causality of changes difficult to interpret.

If corticosteroids are indeed a sufficient cause of hippoc-
ampal damage, then their administration should lead to decline
in hippocampal function and structure. This is the first pro-
spective study of hippocampal volume and function in patients
treated with corticosteroids.

2. Subjects and methods

Patients treated with corticosteroids for pemphigus vul-
garis (N = 2), bulous pemphigoid (N = 9), lichen planum
(N = 1), or systemic lupus (N = 2) recruited between 2001 and
2003 participated in the study. The exclusion criteria were
history of mood disorders, Alzheimer’s disease, vascular
dementia, posttraumatic stress disorder, Cushing’s syn-
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drome, substance abuse and presence of metal implants. Out
of 23-screened subjects, 15 met the inclusion criteria. One
patient discontinued the corticosteroid treatment. Two sub-
jects received corticosteroid treatment intermittently in the
past.

Fourteen remaining subjects (12 women, 2 men) under-
went two and in six cases three prospective neurocognitive
testings. One subject did not finish the second Digit Span
(DS) test. MRI volumetry was performed twice within
3 months in nine subjects and within 5–8 months in six sub-
jects. Twelve patients were treated with prednisone, two with
betamethasone. The information about exact dose of corti-
costeroids was unavailable for one subject participating only
in the neurocognitive testing. One of the patients was treated
with piracetam (2400 mg/day), two occasionally used benzo-
diazepine hypnotics (flunitrazepam). None of the patients was
treated with antidepressants or antipsychotics. As for poten-
tially neuroprotective drugs, one of the patients who under-
went MRI assessment was treated with diltiazem and one par-
ticipating only on neurocognitive testing with nifedipine. All
subjects signed the informed consent. The Research Ethics
Committee of the Prague Psychiatric Center approved the
study.

2.1. Magnetic resonance imaging

We acquired 124 coronal slices of the whole brain by 3D
Spoiled Gradient Recalled Acquisition (slice thickness
1.5 mm, TR = 35 ms, TE = 5 ms, flip angle = 45, matrix size
256 × 256, NEX = 1) on 1.5T GE Signa Imaging System
(General Electric Medical Systems, Milwaukee, WI). The
intensity values for gray and white matter were obtained from
a histogram, as per method previously reported [10] by Image
J software. Anatomical measurements were conducted using
the Scion Image Beta-3b software for Windows (Scion Cor-
poration, Inc., Frederick, MD), in a single batch, according
to a well-established procedure [4], blindly by trained evalu-
ator (TH). The intra-class correlation coefficients established
by tracing 10 training scans were R = 0.94 for right hippoc-

ampus and R = 0.93 for left hippocampus (inter-rater reliabil-
ity). Intra-class correlation coefficient for 10 randomly
selected hippocampi of the study subjects measured twice by
the same rater was R = 0.92, P < 0.0001 (intra-rater reliabil-
ity). Average difference between two measurements of the
same scan was 0.04 ± 0.09 cm3 (range –0.06–0.25).

2.2. Hippocampal volume measurement

Manual tracing of hippocampus started from the slice in
which the superior colliculus completely connected with the
thalamus bilaterally and ended one slice posterior to the slice
in which the mamillary body became visible. The superior
border for tracing consisted of the corona radiata, and the
ambient cistern, the inferior border was defined by the white
matter and lateral border by the inferior horn of the lateral
ventricle [4] (Fig. 1).

2.3. Neurocognitive testing

Standard versions ofAuditoryVerbal Learning test (AVLT),
Trail Making Test (TMT) A and B and DS, all fully con-
verted into Czech language were used [24,25,28]. The actual
measures were the total score (sum of correctly recalled words
in trials I–V) and the number of words correctly recalled in
trial VI (post-distractor trial) for AVLT, time to completion of
each trail in seconds for the TMT and sum of raw scores from
Digits Forward and Digits Backward subtests for the DS. Par-
allel versions of AVLT were used for repeated tests.

2.4. Statistical analyses

The data were analyzed using two-tailed Wilcoxon test for
matched pairs and Spearman rank correlation coefficient.

3. Results

The average age of patients was 59 ± 20 years (range
24–83). Mean interval between the onset of corticosteroids

Fig. 1. Left and right hippocampal volume at time 1 and time 2.
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treatment and the first assessment was 6 days (range 0–19).
The average interval between the first and the second assess-
ment was 73 ± 38 days (range 15–168) for 12 subjects who
participated on neurocognitive testing and 64 ± 15 (range
36–78) for nine subjects who participated on neurocognitive
plus MRI assessments. The average interval between the first
and the third assessment was 193 ± 29 days (range 161–
238). The mean daily dose per patient expressed in pred-
nisone equivalents (1 mg betamethasone = 8.5 mg pred-
nisone) was 37.1 ± 17.2 mg (range 15.8–61.6) between the
first and the second assessment for 12 subjects who under-
went neurocognitive testing and 32.0 ± 14.4 mg (range 15.8–
55.8) for nine subjects who participated on neurocognitive
plus MRI assessments. The average daily dose between the
first and the third assessment was 24.2 ± 15.39 mg (range
10.1–49.9). Daily doses ranged from 7.5–90 mg prednisone
per day.

There was a trend towards a decrease in the total AVLT
score (46.5 ± 10.6 vs. 41.9 ± 8.7; N = 14, Wilcoxon test
Z = 1.76, P = 0.08) from the first to the second assessment
and a non-significant decrease in the number of words cor-
rectly recalled in trial VI (9.5 ± 2.6 vs. 8.6 ± 2.8; N = 14,
Z = 0.97, P = 0.33). The decrease in AVLT performance
between time one and time three was not significant (51.5 ±
9.2 vs. 48.2 ± 5.1; N = 6, Z = 1.15; P = 0.25 for the total score
and 10.7 ± 1.8 vs. 9.0 ± 0.9; N = 6, Z = 1.62; P = 0.11 for the
number of words correctly recalled in trial VI).

There was a trend towards improvement in DS from time
one to time two (10.5 ± 3.8 vs. 11.9 ± 3.8; N = 13, Z = 1.72;
P = 0.09) and a significant improvement from time one to
time three (10.0 ± 4.0 vs.13.0 ± 3.7; N = 6, Z = 2.20; P = 0.03).

Patients significantly improved in TMT A from time one
to time two (62.4 ± 27.5 vs. 46.2 ± 16.9 s; N = 14, Z = 2.79;
P < 0.01), with a trend towards improvement also in TMT B
(130.2 ± 83.2 vs. 97.5 ± 49.9 s; N = 14, Z = 1.64; P = 0.1).
There was a significant improvement in TMT A between the
first and the third measurement (61.8 ± 20.3 vs. 35.2 ± 9.8 s;
N = 6, Z = 2.20; P = 0.03), with a non-significant difference
in TMT B (99.9 ± 32.4 vs. 122.2 ± 69.8 s; N = 6, Z = 0.73;
P = 0.46).

There were no significant changes in the volume of the
right (2.7 ± 0.5 vs. 2.6 ± 0.4 cm3; N = 9, Z = 0.65, P = 0.51;
mean difference = –0.06, range = –0.48–0.26; 95% confi-
dence interval = –0.22–0.1), or the left (2.6 ± 0.5 vs. 2.7 ±
0.6 cm3; N = 9, Z = 0.3, P = 0.77; mean difference = 0.04,
range = –0.23–0.47; 95% confidence interval = –0.11–0.19)
hippocampus between the first and the second measurement
(see Fig. 1) or between the first and the third measurements
(2.7 ± 0.6 vs. 2.6 ± 0.7 cm3; N = 6, Z = 1.15, P = 0.25; mean
difference = –0.1, range = –0.32–0.21; 95% confidence inter-
val = –0.31–0.11; 2.7 ± 0.5 vs. 2.7 ± 0.7 cm3; N = 6, Z = 0.94,
P = 0.35; mean difference = 0.07, range = –0.41–0.11; 95%
confidence interval = –0.25–0.12 for the right and the left hip-
pocampus, respectively).

There was no correlation between the number of days on
corticosteroids before MRI and the volume of the right or the

left hippocampus measured at time 1 (N = 10, Spearman rank
R = 0.49, P = 0.15; N = 10, Spearman rank R = 0.34, P = 0.34,
respectively). Mean daily dose of corticosteroids between the
first and the second evaluation did not correlate with the right
(N = 9, Spearman rank R = –0.52, P = 0.15) or the left hip-
pocampal volume change (N = 9, Spearman rank R = 0.38,
P = 0.31). The subject with the greatest exposure to corticos-
teroids had the greatest volume increase from time one to
time two. The subject with the greatest hippocampal volume
decrease was exposed to median levels of 27 mg prednisone.

4. Discussion

We did not observe any changes in hippocampal volume
after an average of 64 days of treatment with a mean dose of
32 mg of prednisone per day, nor after average of 193 days
with mean dose of 24 mg of prednisone per day. The lack of
changes could be a type II error due to small statistical power.
We would need 15 subjects to obtain 80% statistical power to
detect an average effect size of 0.7, acquired in previous ret-
rospective volumetric studies using similar methods in popu-
lations of similar age [5,33–35]. With nine subjects we have
60% power to detect differences similar to those reported in
the above-mentioned studies. Since the observed average vol-
ume change (–2.2%; 95% confidence interval –8–3% and 2%;
95% confidence interval –4–7% for the right and left hippoc-
ampus, respectively) was lower than the previously reported
mean volumetric decreases (8–19%) and there was not even
a trend towards hippocampal volume shrinkage, increasing
the sample size would be unlikely to change the results. Fur-
thermore the MRI method is sensitive enough to detect vol-
ume changes in the previously reported range (8–19%) as the
measurement error was only 1.5%.

The lack of changes in this study is in disagreement with
majority of animal studies reporting histopathological abnor-
malities of hippocampus in rodents and non-human primates
exposed to corticosteroids from weeks to months [19]. Inter-
species differences as well as other factors can play a role.
Animal studies typically use natural corticosteroids, which
differ from synthetic preparations in penetration through blood
brain barrier and affinity for corticosteroid receptors. Further-
more the doses of corticosteroids in animal experiments usu-
ally exceed therapeutic doses in humans. Different route of
corticosteroid administration, with frequent parenteral or
intracerebral application in animal studies, or too short time
interval in our study could also contribute to this discrep-
ancy. Hippocampal pathology in animal studies is usually
assessed by histopathological techniques. Microscopic
changes (decreased dendritic sprouting, neuronal shrinkage,
neuronal loss [20,30,36]) do not necessarily have to translate
to volume changes detectable by MRI, at least not in the early
stages of the damage. Studies comparing MRI and histopatho-
logical techniques in assessing hippocampal damage are
scarce. In patients with temporal lobe epilepsy hippocampal
volume was the largest among those with mild histopatho-
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logical hippocampal damage and the smallest among patients
with severe gliosis and neuronal loss [12]. It is thus possible
that only severe impairment with neuronal loss will lead to
volume decrease measurable by MRI. However, no major cell
loss was apparent in human post-mortem brain tissue of
depressed patients or subjects exposed to exogeneous corti-
costeroids [14,21].

At the same time early microscopic changes could already
compromise hippocampal function. Indeed, we observed a
trend towards worsening of verbal memory, which is consis-
tent with prior investigations of corticosteroid exposure [1,6].
Impaired performance in neurocognitive tests in the absence
of structural changes is in agreement with several other stud-
ies. Patients with first episode of depression relative to healthy
controls had impaired recollection memory without changes
in hippocampal volume. On the other hand patients with mul-
tiple episodes of depression relative to first episode patients
had smaller hippocampal volume but similar impairment in
cognitive functions [16]. Similarly medication-free noneld-
erly depressed outpatients had declarative memory deficits
despite normal hippocampal volume [37]. Impaired memory
function in the absence of structural hippocampal damage
was confirmed also in rats exposed to stress levels of corti-
costeroids for 3 months [2]. Tree shrews exposed to 4 weeks
of psychosocial stress or cortisol treatment showed decline
in hippocampus-mediated memory and only a trend for
decrease in hippocampal volume measured by MRI volum-
etry [22].

The verbal memory decline appeared despite an improve-
ment in psychomotor speed and attention/working memory
as measured by the TMT and DS. This improvement could
be due to resolution of somatic symptoms with treatment, or
alternatively due to practice effect. Practice effect is of con-
sideration in Trail A, less so in Trail B and it is negligible in
DS [13]. The improvement in DS does not support emerging
data suggesting impairment of frontal lobe functions (work-
ing memory) by corticosteroid treatment [15].

Neurocognitive deficits in the absence of structural changes
can be also due to effects of corticosteroids on other recep-
tors for neurotransmitters. In men, cognitive impairment is
evident already after a single dose of 1 mg of dexamethasone
or 10 mg of cortisol [11,38]. This effect is most likely not due
to neurodegeneration but seems to be mediated by the ago-
nistic action of corticosteroids and their metabolites on
GABAA receptors [26].

The absence of structural hippocampal changes is in agree-
ment with post-mortem data from patients treated with corti-
costeroids for short periods of time (days to months) [21] but
in contrast with results from patients with mood disorders
[29] and recent findings of 8–9% hippocampal volume
decrease in corticosteroid treated patients [6]. However, the
average duration of corticosteroid exposure in the study by
Brown et al. [6] was 92 months as opposed to up to 8 months
in the reported study. The similar profile of neurocognitive
deficits in both studies again suggests the possibility of micro-
scopic changes manifesting as functional impairment. Longer

duration of exposure might be necessary for any gross volu-
metric changes detectable by MRI to occur. Prospective stud-
ies in human subjects exposed to psychological trauma (auto-
mobile accident, maltreatment leading to pediatric
posttraumatic stress disorder) failed to observe volumetric
changes of hippocampus after 6 months or more than 2 years
[3,8]. Similarly no change in hippocampal volume was
observed after 1 year in patients with major depressive disor-
der [9]. On the other hand studies in laboratory animals find
first histopathological abnormalities already after 3 weeks of
intense stress in rats [17] and after 4 weeks of psychosocial
stress in tree shrews [18]. Marked neuropathological changes
in CA2 and CA3 cell fields were seen 1 year after the implan-
tation of cortisol pellets into hippocampi of vervet monkeys
[30].

Alternatively corticosteroids alone may not be sufficient
to cause hippocampal damage. Administration of exogenous
corticosteroids inhibits the release of corticoliberin (CRH)
and adrenocorticotropic hormone (ACTH), it does not mimic
stress related activation of sympatoadrenal system and
changes in glutamatergic and monoaminergic systems. These
can directly contribute to excitotoxicity especially in neurons
with increased vulnerability and decreased regenerative capac-
ity mediated by higher levels of corticosteroids. For example
corticoliberin, independent of glucocorticoids, has neuro-
toxic effects on hippocampal neurons [7]. It is possible that
for neuronal damage to occur, interplay between more stress
related hormones, releasing factors or neurotransmitters is
necessary; for review see [19]. Glucocorticoid resistance
mediated by alterations in genetic structure of glucocorticoid
receptor or downstream ligand-independent pathways can also
play an important role [23]. Some authors suggest that cell
damage in CNS is associated with insufficient glucocorticoid
signaling leading to unrestrained inflammation and release
of inflammatory cytokines [27].

Main limitations of this study are small sample size, dis-
cussed above, relatively low doses of corticosteroids, and short
duration of treatment. The dosage of corticosteroids in human
subjects has to follow therapeutic guidelines. Data from
human subjects treated with supratherapeutic doses of corti-
costeroids for extended periods of time thus cannot be
obtained. As for the duration of corticosteroids exposure, first
structural changes in rodents appeared already after 3 weeks
of intense stress [17]. Longer-term follow up is warranted,
but this would be complicated due to limited treatment dura-
tion in some patients, increased risk of drop-outs and demo-
graphic changes. In some patients treatment with corticoster-
oids was initiated already before MRI scanning (mean 6 days,
range 0–19 days). Based on the above-mentioned prospec-
tive studies in men, this time gap is unlikely to have biased
the volumetric results. Indeed there was no correlation
between the number of days on corticosteroids before MRI
and the volume of the right or the left hippocampus mea-
sured at time 1. We evaluated the inter- and intra-rater reli-
abilities. However, technical aspects of MRI acquisition (same
placement of patients, movement etc.) during repeated scan-
ning may somewhat increase the error of measurement.
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In summary, we observed a trend for decline in verbal
memory despite improvement in psychomotor speed and
attention/working memory and no macroscopic hippocam-
pal volume changes during 36–238 days of treatment with
corticosteroids in therapeutic doses. This negative finding is
of clinical significance. Administration of corticosteroids in
therapeutic doses for up to 7 months seems to be safe with
regard to macroscopic hippocampal volume changes. Micro-
scopic impairment, below the resolution of current MRI, lead-
ing to memory decline, however, cannot be ruled out.
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